Как правильно округлять НДФЛ

Общий порядок округления и терминология

  • Округление числа, записанного в позиционной системе счисления с M знаками дробной части, может производиться «до K-го знака после запятой», где K ≤ M. При таком округлении в записи числа отбрасываются справа (M-K) значащих цифр, а K-я цифра после запятой может измениться (см. #Методы). Применяется также терминология с указанием единицы наименьшей десятичной доли, сохраняющейся у округлённого числа, то есть «округление до десятых», «…до сотых», «…до тысячных» и т. д. (соответствует округлению до одного, двух, трёх и так далее знаков после запятой). Частный случай, когда K=0, называется «округлением до целого».
  • Когда при округлении отбрасываются значащие цифры целой части числа, говорят об «округлении до десятков» (сотен, тысяч и так далее), отбрасывая, соответственно, один, два, три и более знака. При таком округлении отбрасываемые цифры целой части числа заменяются на нули.
  • Для чисел, представленных в нормализованном виде, говорят об «округлении до K (значащих) цифр». При этом мантисса числа сохраняет K значащих цифр, остальные цифры справа отбрасываются.

Методы

В разных сферах могут применяться различные методы округления. Во всех этих методах «лишние» знаки обнуляют (отбрасывают), а предшествующий им знак корректируется по какому-либо правилу.

  • Округление к ближайшему целому (англ. rounding) — наиболее часто используемое округление, при котором число округляется до целого, модуль разности с которым у этого числа минимален. В общем случае, когда число в десятичной системе округляют до N-го знака, правило может быть сформулировано следующим образом:
    • если N+1 знак < 5, то N-й знак сохраняют, а N+1 и все последующие обнуляют;
    • если N+1 знак ≥ 5, то N-й знак увеличивают на единицу, а N+1 и все последующие обнуляют;

    Например: 11,9 → 12; −0,9 → −1; −1,1 → −1; 2,5 → 3. Максимальная дополнительная абсолютная погрешность, вносимая при таком округлении (погрешность округления), составляет ±0,5 последнего сохраняемого разряда.

  • Округление к меньшему по модулю (округление к нулю, целое англ. fix, truncate, integer) — самое «простое» округление, поскольку после обнуления «лишних» знаков предшествующий знак сохраняют, то есть технически оно состоит в отбрасывании лишних знаков. Например, 11,9 → 11; −0,9 → 0; −1,1 → −1). При таком округлении может вноситься погрешность в пределах единицы последнего сохраняемого разряда, причём в положительной части числовой оси погрешность всегда отрицательна, а в отрицательной — положительна.
  • Округление к большему (округление к +∞, округление вверх, англ. ceiling — досл. «потолок») — если обнуляемые знаки не равны нулю, предшествующий знак увеличивают на единицу, если число положительное, или сохраняют, если число отрицательное. В экономическом жаргоне — округление в пользу продавца, кредитора (лица, получающего деньги). В частности, 2,6 → 3, −2,6 → −2. Погрешность округления — в пределах +1 последнего сохраняемого разряда.
  • Округление к меньшему (округление к −∞, округление вниз, англ. floor — досл. «пол») — если обнуляемые знаки не равны нулю, предшествующий знак сохраняют, если число положительное, или увеличивают на единицу, если число отрицательное. В экономическом жаргоне — округление в пользу покупателя, дебитора (лица, отдающего деньги). Здесь 2,6 → 2, −2,6 → −3. Погрешность округления — в пределах −1 последнего сохраняемого разряда.
  • Округление к большему по модулю (округление к бесконечности, округление от нуля) — относительно редко используемая форма округления. Если обнуляемые знаки не равны нулю, предшествующий знак увеличивают на единицу. Погрешность округления составляет +1 последнего разряда для положительных и −1 последнего разряда для отрицательных чисел.

Варианты округления 0,5 к ближайшему целому

Отдельного описания требуют правила округления для специального случая, когда (N+1)-й знак = 5, а последующие знаки равны нулю. Если во всех остальных случаях округление до ближайшего целого обеспечивает меньшую погрешность округления, то данный частный случай характерен тем, что для однократного округления формально безразлично, производить его «вверх» или «вниз» — в обоих случаях вносится погрешность ровно в 1/2 младшего разряда. Существуют следующие варианты правила округления до ближайшего целого для данного случая:

  • Математическое округление — округление всегда в бо́льшую по модулю сторону (предыдущий разряд всегда увеличивается на единицу).
  • Банковское округление (англ. banker’s rounding) — округление для этого случая происходит к ближайшему чётному, то есть 2,5 → 2; 3,5 → 4.
  • Случайное округление — округление происходит в меньшую или большую сторону в случайном порядке, но с равной вероятностью (может использоваться в статистике). Также часто используется округление с неравными вероятностями (вероятность округления вверх равна дробной части), этот способ делает накопление ошибок случайной величиной с нулевым математическим ожиданием.
  • Чередующееся округление — округление происходит в меньшую или большую сторону поочерёдно.

Во всех вариантах в случае, когда (N+1)-й знак не равен 5 или последующие знаки не равны нулю, округление происходит по обычным правилам: 2,49 → 2; 2,51 → 3.

Математическое округление просто формально соответствует общему правилу округления (см. выше). Его недостатком является то, что при округлении большого числа значений, которые далее будут обрабатываться совместно, может происходить накопление ошибки округления. Типичный пример: округление до целых рублей денежных сумм, выражаемых в рублях и копейках. В реестре из 10 000 строк (если считать копеечную часть каждой суммы случайным числом с равномерным распределением, что обычно вполне допустимо) окажется в среднем около 100 строк с суммами, содержащими в части копеек значение 50. При округлении всех таких строк по правилам математического округления «вверх» сумма «итого» по округлённому реестру окажется на 50 рублей больше точной.

Три остальных варианта как раз и придуманы для того, чтобы уменьшить общую погрешность суммы при округлении большого количества значений. Округление «до ближайшего чётного» исходит из предположения, что при большом числе округляемых значений, имеющих 0,5 в округляемом остатке, в среднем половина из них окажется слева, а половина — справа от ближайшего чётного, таким образом, ошибки округления взаимно погасятся. Строго говоря, предположение это верно лишь тогда, когда набор округляемых чисел обладает свойствами случайного ряда, что обычно верно в бухгалтерских приложениях, где речь идёт о ценах, суммах на счетах и так далее. Если же предположение будет нарушено, то и округление «до чётного» может приводить к систематическим ошибкам. Для таких случаев лучше работают два следующих метода.

Два последних варианта округления гарантируют, что примерно половина специальных значений будет округлена в одну сторону, половина — в другую. Но реализация таких методов на практике требует дополнительных усилий по организации вычислительного процесса.

  • Округление в случайную сторону требует для каждой округляемой строки генерировать случайное число. При использовании псевдослучайных чисел, создаваемых линейным рекуррентным методом, для генерации каждого числа требуется операция умножения, сложения и деления по модулю, что для больших объёмов данных может существенно замедлить расчёты.
  • Чередующееся округление требует хранить флаг, показывающий, в какую сторону последний раз округлялось специальное значение, и при каждой операции переключать значение этого флага.

Обозначения

Операция округления числа x к большему (вверх) обозначается следующим образом: ⌈ x ⌉ {\displaystyle \lceil x\rceil } . Аналогично, округление к меньшему (вниз) обозначается ⌊ x ⌋ {\displaystyle \lfloor x\rfloor } . Эти символы (а также английские названия для этих операций — соответственно, ceiling и floor, досл. «потолок» и «пол») были введены К. Айверсоном в его работе A Programming Language, описавшей систему математических обозначений, позже развившуюся в язык программирования APL. Айверсоновские обозначения операций округления были популяризированы Д. Кнутом в его книге «Искусство программирования».

По аналогии, округление к ближайшему целому часто обозначают как {\displaystyle \left} . В некоторых прежних и современных (вплоть до конца XX века) работах так обозначалось округление к меньшему; такое использование этого обозначения восходит ещё к работе Гаусса 1808 года (третье его доказательство квадратичного закона взаимности). Кроме того, это же обозначение используется (с другим значением) в нотации Айверсона.

В стандарте Юникод зафиксированы следующие символы:

Название
в Юникоде
Код в Юникоде Вид Мнемоника
в HTML 4
Примечания
16-ричный десятичный
LEFT CEILING (тж. APL upstile) 2308 8968 &lceil; не путать с:

  • U+2E22 ⸢ — Top left half bracket
  • U+300C 「 — Left corner bracket
RIGHT CEILING 2309 8969 &rceil; не путать с:

  • U+20E7 ◌⃧ — Combining annuity symbol
  • U+2E23 ⸣ — Top right half bracket
LEFT FLOOR (тж. APL downstile) 230A 8970 &lfloor; не путать с:

  • U+2E24 ⸤ — Bottom left half bracket
RIGHT FLOOR 230B 8971 &rfloor; не путать с:

  • U+2E25 ⸥ — Bottom right half bracket
  • U+300D 」 — Right corner bracket

Применения

Округление используется для того, чтобы работать с числами в пределах того количества знаков, которое соответствует реальной точности параметров вычислений (если эти значения представляют собой измеренные тем или иным образом реальные величины), реально достижимой точности вычислений либо желаемой точности результата. В прошлом округление промежуточных значений и результата имело прикладное значение (так как при расчётах на бумаге или с помощью примитивных устройств типа абака учёт лишних десятичных знаков может серьёзно увеличить объём работы). Сейчас оно остаётся элементом научной и инженерной культуры. В бухгалтерских приложениях, кроме того, использование округлений, в том числе промежуточных, может требоваться для защиты от вычислительных ошибок, связанных с конечной разрядностью вычислительных устройств.

Более того, некоторые исследования используют округления возраста для измерения числовой грамотности. Это связано с фактом, что менее образованные люди склонны округлять свой возраст вместо того, что бы указывать точный. Например, в официальных записях населения с более низким уровнем человеческого капитала чаще встречается возраст 30, чем 31 или 29.

Использование округлений при работе с числами ограниченной точности

Реальные физические величины всегда измеряются с некоторой конечной точностью, которая зависит от приборов и методов измерения и оценивается максимальным относительным или абсолютным отклонением неизвестного истинного значения от измеренного, что в десятичном представлении значения соответствует либо определённому числу значащих цифр, либо определённой позиции в записи числа, все цифры после (правее) которой являются незначащими (лежат в пределах ошибки измерения). Сами измеренные параметры записываются с таким числом знаков, чтобы все цифры были надёжными, возможно, последняя — сомнительной. Погрешность при математических операциях с числами ограниченной точности сохраняется и изменяется по известным математическим законам, поэтому когда в дальнейших вычислениях возникают промежуточные значения и результаты с больши́м числом цифр, из этих цифр только часть являются значимыми. Остальные цифры, присутствуя в значениях, фактически не отражают никакой физической реальности и лишь отнимают время на вычисления. Вследствие этого промежуточные значения и результаты при вычислениях с ограниченной точностью округляют до того количества знаков, которое отражает реальную точность полученных значений. На практике обычно рекомендуется при длинных «цепочных» ручных вычислениях сохранять в промежуточных значениях на одну цифру больше. При использовании компьютера промежуточные округления в научно-технических приложениях чаще всего теряют смысл, и округляется только результат.

Так, например, если задана сила 5815 гс с точностью до грамма силы и длина плеча 1,4 м с точностью до сантиметра, то момент силы в кгс по формуле M = ( m g ) ⋅ h {\displaystyle M=(mg)\cdot h} , в случае формального расчёта со всеми знаками, окажется равным: 5,815 кгс • 1,4 м = 8,141 кгс•м. Однако если учесть погрешность измерения, то мы получим, что предельная относительная погрешность первого значения составляет 1/5815 ≈ 1,7•10−4, второго — 1/140 ≈ 7,1•10−3, относительная погрешность результата по правилу погрешности операции умножения (при умножении приближённых величин относительные погрешности складываются) составит 7,3•10−3, что соответствует максимальной абсолютной погрешности результата ±0,059 кгс•м! То есть в реальности, с учётом погрешности, результат может составлять от 8,082 до 8,200 кгс•м, таким образом, в рассчитанном значении 8,141 кгс•м полностью надёжной является только первая цифра, даже вторая — уже сомнительна! Корректным будет округление результата вычислений до первой сомнительной цифры, то есть до десятых: 8,1 кгс•м, или, при необходимости более точного указания рамок погрешности, представить его в виде, округлённом до одного-двух знаков после запятой с указанием погрешности: 8,14 ± 0,06 кгс•м.

Эмпирические правила арифметики с округлениями

В тех случаях, когда нет необходимости в точном учёте вычислительных погрешностей, а требуется лишь приблизительно оценить количество точных цифр в результате расчёта по формуле, можно пользоваться набором простых правил округлённых вычислений:

  1. Все исходные значения округляются до реальной точности измерений и записываются с соответствующим числом значащих цифр, так, чтобы в десятичной записи все цифры были надёжными (допускается, чтобы последняя цифра была сомнительной). При необходимости значения записываются со значащими правыми нулями, чтобы в записи указывалось реальное число надёжных знаков (например, если длина в 1 м реально измерена с точностью до сантиметров, записывается «1,00 м», чтобы было видно, что в записи надёжны два знака после запятой), или точность явно указывается (например, 2500±5 м — здесь надёжными являются только десятки, до них и следует округлять).
  2. Промежуточные значения округляются с одной «запасной» цифрой.
  3. При сложении и вычитании результат округляется до последнего десятичного знака наименее точного из параметров (например, при вычислении значения 1,00 м + 1,5 м + 0,075 м результат округляется до десятых метра, то есть до 2,6 м). При этом рекомендуется выполнять вычисления в таком порядке, чтобы избегать вычитания близких по величине чисел и производить действия над числами по возможности в порядке возрастания их модулей.
  4. При умножении и делении результат округляется до наименьшего числа значащих цифр, которое имеют множители или делимое и делитель. Например, если тело при равномерном движении прошло дистанцию 2,5⋅103 метров за 635 секунд, то при вычислении скорости результат должен быть округлён до 3,9 м/с, поскольку одно из чисел (расстояние) известно лишь с точностью до двух значащих цифр. Важное замечание: если один операндов при умножении или делитель при делении является по смыслу целым числом (то есть не результатом измерений непрерывной физической величины с точностью до целых единиц, а, например, количеством или просто целой константой), то количество значащих цифр в нём на точность результата операции не влияет, и оставляемое число цифр определяется только вторым операндом. Например, кинетическая энергия тела массой 0,325 кг, движущегося со скоростью 5,2 м/с, равна E k = m v 2 2 = 0.325 ⋅ 5.2 2 2 = 4.394 ≈ 4.4 {\displaystyle E_{k}={\tfrac {mv^{2}}{2}}={\tfrac {0.325\cdot 5.2^{2}}{2}}=4.394\approx 4.4} Дж — округляется до двух знаков (по количеству значащих цифр в значении скорости), а не до одного (делитель 2 в формуле), так как значение 2 по смыслу — целая константа формулы, она является абсолютно точной и не влияет на точность вычислений (формально такой операнд можно считать «измеренным с бесконечным числом значащих цифр»).
  5. При вычислении значения функции f ( x ) {\displaystyle f\left(x\right)} требуется оценить значение модуля производной этой функции в окрестности точки вычисления. Если | f ′ ( x ) | ⩽ 1 {\displaystyle \left|f’\left(x\right)\right|\leqslant 1} , то результат функции точен до того же десятичного разряда, что и аргумент. В противном случае результат содержит меньше точных десятичных разрядов на величину log 10 ⁡ ( | f ′ ( x ) | ) {\displaystyle \log _{10}\left(\left|f’\left(x\right)\right|\right)} , округлённую до целого в большую сторону.

Несмотря на нестрогость, приведённые правила достаточно хорошо работают на практике, в частности, из-за достаточно высокой вероятности взаимопогашения ошибок, которая при точном учёте погрешностей обычно не учитывается.

Как отражать денежные суммы в бухгалтерских документах — с копейками или без

Чем поможет эта статья: Избежать расхождений между показателями в отчетности и платежках, первичных документах и счетах-фактурах. От чего убережет: От претензий со стороны проверяющих и контрагентов.

в год посещают сайт журнала glavbukh.ru. Считайте, каждый одиннадцатый житель России — ваш коллега.

Осторожно! Даже небольшие расхождения между начисленными и уплаченными налогами или взносами могут стать поводом для проверяющих потребовать заплатить недоимку.

Налоги можно платить в рублях, а страховые взносы — в рублях и копейках. В первичке показатели можно округлять, а в счетах-фактурах — нет. Для отчетности тоже свои правила. Иногда из-за такого разнообразия можно случайно неверно округлить сумму платежа. Как следствие, возникнет долг перед бюджетом.

Вроде бы копейки, но лучше их избегать. Во-первых, проверяющие часто выставляют требования даже на копеечные суммы. Во-вторых, мизерная недоимка может помешать получить справку об отсутствии долгов перед бюджетом.

В-третьих, минимальные расхождения становятся причиной, по которой проверяющие отказываются принимать отчетность.

Расскажем, каких правил стоит придерживаться, чтобы и в учете все было верно, и с инспекторами спорить не пришлось.

В первичных документах и счетах-фактурах — с копейками

В первичных документах допускается округление показателей до целых рублей. Бухгалтеры в компаниях вправе вести бухгалтерский учет хозяйственных операций, имущества без копеек (п. 25 Положения, утв. приказом Минфина России от 29 июля 1998 г. № 34н).

В то же время округлять показатели до целых рублей в счетах-фактурах не допускается. Их заполняют в рублях и копейках (письмо Минфина России от 29 января 2014 г. № 03-02-07/1/3444).

Если вы округлите цены и стоимость в счетах-фактурах, то налоговики могут отказать вашему покупателю в вычете НДС.

И хотя компаниям удавалось раньше оспорить такие решения налоговых инспекторов, лучше изначально не округлять суммы в документах до целых рублей.

Пени по налогам исчисляют из 1/300 ставки рефинансирования. Она в настоящее время равна 8,25 процента. То есть размер ежедневных пеней составляет 0,0275 процента (8,25: 300). Надо ли их округлять и как?

Округлять дневную ставку пеней до двух знаков после запятой, то есть до 0,03 процента, не надо. Ведь из Налогового кодекса РФ не следует, что ежедневную сумму пеней надо округлять. А все неясности толкуют в пользу компаний. Поэтому выгоднее применять дневную ставку, в которой четыре знака после запятой — 0,0275.

Так сумма пеней у компании будет меньше. И только их общую сумму за все дни просрочки можно округлить до двух знаков после запятой (определение ВАС РФ от 22 октября 2009 г. № ВАС-13685/09). Такой вариант не спровоцирует споров с проверяющими. Именно такой расчет приводят налоговики в приказе ФНС от 18 января 2012 г.

№ ЯК-7-1/9@.

Если в счетах-фактурах вы будете указывать стоимостные показатели с копейками, а в первичке в целых рублях, у компании возникнут разницы. Из-за этого налоговые инспекторы наверняка откажут вашему покупателю в вычете входного НДС. Поэтому во всех документах показатели лучше отражать с копейками.

Тем более бухгалтерские программы обычно автоматически округляют данные в первичных документах и счетах-фактурах до двух знаков после запятой. Однако у контрагентов могут возникнуть сомнения, правильно ли сделано округление. Предположим, ваш покупатель рассчитал сумму аванса в размере 125 026,55 руб.

, а вы выставили ему счет на предоплату в сумме 125 026,52 руб.

Если контрагенты обращаются с такими требованиями регулярно, то имеет смысл прописать в учетной политике, как программа делает округления. А выписку из учетной политики представлять контрагентам (образец — см. ниже). Это избавит вас от частых исправлений первички.

Важная деталь Сделайте для контрагента выписку из учетной политики. У него больше не будет вопросов об округлении в первичке и счете-фактуре.

Распечатать образец >>

Скачать бланк в формате Word >>

В декларациях и платежках по налогам — в целых рублях

Абсолютно все налоги необходимо перечислять в полных рублях (п. 6 ст. 52 НК РФ). В налоговых декларациях суммы также округляют до целых рублей по правилам математики.

Причем в форме любой декларации вы можете увидеть, что округляют не только итоговые данные, но и промежуточные цифры на каждом листе.

Поэтому ту сумму налога, которую бухгалтер отразит в декларации, он укажет также в платежном поручении. Никаких расхождений не будет.

Исключение — ситуация с НДС. Платеж по этому налогу компании разбивают на три равные части и перечисляют их в течение следующего квартала. Чаще всего сумма НДС поровну на 3 не делится.

В связи с этим платеж в одном из месяцев будет отличаться на рубль от платежей в двух других месяцах. Причем компания вправе в первом и втором месяце перечислить поменьше, а в третьем — побольше. Это мнение высказали в ФНС России в письме от 15 января 2009 г.

№ ВЕ-22-3/16@. Разъяснение доведено до сведения налоговых инспекторов.

В отчетности и платежках по взносам — с копейками

Страховые взносы тоже можно платить в целых рублях (п. 7 ст. 15 Федерального закона от 24 июля 2009 г. № 212-ФЗ). Но если в налоговых декларациях суммы округляют, то в отчетности по страховым взносам нет. Показатели в формах РСВ-1 ПФР и 4 ФСС указывают в рублях и копейках. Поэтому между данными в отчетности и в платежках могут возникнуть небольшие расхождения.

Проблема в том, что эти небольшие расхождения часто становятся поводом для споров с проверяющими. Например, когда специалисты фондов требуют уплатить недоимку в размере нескольких копеек.

В прошлом году специалисты Минтруда России выпустили разъяснение о том, что такие доначисления неправомерны (письмо от 14 февраля 2013 г. № 17–4/264). Но данное разъяснение не доведено до сведения региональных отделений фондов.

Поэтому не исключено, что вы столкнетесь с такими требованиями. Кроме того, недоимка будет числиться в акте совместной сверки с фондом.

Еще одна проблема — страховые взносы платят ежемесячно не позднее 15-го числа следующего месяца. А отчеты сдают раз в квартал. И если при приемке расчетов проверяющие заметят, что в отчетности отражены не те суммы, которые были в платежках, документы могут не принять. Чтобы не было таких проблем, советуем перечислять страховые взносы в рублях и копейках.

Какие еще показатели можно округлять, а какие нет

1 Показатели в счетах-фактурах округлять до целых рублей нельзя. А в первичке можно, но нежелательно.

2 Расчеты по страховым взносам заполняют с копейками, а налоговые декларации — в целых рублях.

Дополнительно про округления

Статья: «Как округлять дни, рубли и копейки при расчетах с сотрудниками, ничего не нарушая» («Главбух» № 19, 2013).

Документы: Положение по ведению бухгалтерского учета и бухгалтерской отчетности, утвержденное приказом Минфина России от 29 июля 1998 г. № 34н; Федеральный закон от 24 июля 2009 г. № 212-ФЗ.

Можно ли перечислять страховые взносы в рублях и копейках, чтобы не было расхождений между данными в платежках и отчетности? Нет, страховые взносы в платежках обязательно надо округлять до целых рублей. Да, законодательство прямо это разрешает. Да, проверяющие возражать не будут. Законодательство требует округлять страховые взносы в платежках до целых рублей. Но если в налоговых декларациях суммы округляют, то в отчетности по страховым взносам нет. Поэтому, чтобы избежать расхождений с отчетностью, компания вправе платить взносы в рублях и копейках. Проверяющие возражать не станут.

Правила округления чисел после запятой: как правильно округлять до единиц, сотых, тысячных и целых

Округлять числа в жизни приходится чаще, чем кажется многим. Особенно это актуально для людей тех профессий, которые связаны с финансами. Этой процедуре люди, работающие в данной сфере, обучены хорошо.

Но и в повседневной жизни процесс приведения значений к целому виду не редкость. Многие люди благополучно забыли, как округлять числа, сразу же после школьной скамьи.

Напомним основные моменты этого действия.

Круглое число

Перед тем как перейти к правилам округления значений, стоит разобраться, что представляет собой круглое число. Если речь идет о целых, то оно обязательно заканчивается нулем.

На вопрос, где в повседневной жизни пригодиться такое умение, можно смело ответить – при элементарных походах по магазинам.

С помощью правила приблизительного подсчета можно прикинуть, сколько будут стоить покупки и какую сумму необходимо взять с собой.

Именно с круглыми числами легче выполнять подсчеты, не используя при этом калькулятор.

К примеру, если в супермаркете или на рынке покупают овощи весом 2 кг 750 г, то в простом разговоре с собеседником зачастую не называют точный вес, а говорят, что приобрели 3 кг овощей. При определении расстояния между населенными пунктами также применяют слово «около». Это и значит приведение результата к удобному виду.

Следует отметить, что при некоторых подсчетах в математике и решении задач также не всегда используются точные значения. Особенно это актуально в тех случаях, когда в ответе получают бесконечную периодическую дробь. Приведем несколько примеров, когда используются приближенные значения:

  • некоторые значения постоянных величин представляются в округленном виде (число «пи» и прочее);
  • табличные значения синуса, косинуса, тангенса, котангенса, которые округлены до определенного разряда.

Обратите внимание! Как показывает практика, приближение значений к целому, конечно, дает погрешность, но сосем незначительную. Чем выше разряд, тем точнее будет результат.

Получение приближенных значений

Это математическое действие осуществляется по определенным правилам.

Но для каждого множества чисел они разные. Отмечают, что округлить можно целые числа и десятичные дроби.

А вот с обыкновенными дробями действие не выполняется.

Сначала их необходимо перевести в десятичные дроби, а затем приступить к процедуре в необходимом контексте.

Правила приближения значений заключаются в следующем:

  • для целых – замена разрядов, следующих за округляемым, нулями;
  • для десятичных дробей – отбрасывания всех чисел, которые находятся за округляемым разрядом.

К примеру, округляя 303 434 до тысяч, необходимо заменить сотни, десятки и единицы нулями, то есть 303 000. В десятичных дробях 3,3333 округляя до десятых, просто отбрасывают все последующие цифры и получают результат 3,3.

! Что такое деление с остатком: примеры для ребенка в 3, 4 классе

Точные правила округления чисел

При округлении десятичных дробей недостаточно просто отбросить цифры после округляемого разряда. Убедиться в этом можно на таком примере.

Если в магазине куплено 2 кг 150 г конфет, то говорят, что приобретено около 2 кг сладостей. Если же вес составляет 2 кг 850 г, то производят округление в большую сторону, то есть около 3 кг.

То есть видно, что иногда округляемый разряд изменен. Когда и как это проделывают, смогут ответить точные правила:

  1. Если после округляемого разряда следует цифра 0, 1, 2, 3 или 4, то округляемый оставляют неизменным, а все последующие цифры отбрасываются.
  2. Если после округляемого разряда следует цифра 5, 6, 7, 8 или 9, то округляемый увеличивают на единицу, а все последующие цифры также отбрасываются.

К примеру, как правильно дробь 7,41 приблизить к единицам. Определяют цифру, которая следует за разрядом. В данном случае это 4. Следовательно, согласно правилу, число 7 оставляют неизменным, а цифры 4 и 1 отбрасывают. То есть получаем 7.

Если округляется дробь 7,62, то после единиц следует цифра 6. Согласно правилу, 7 необходимо увеличить на 1, а цифры 6 и 2 отбросить. То есть в результате получится 8.

Представленные примеры показывают, как округлить десятичные дроби до единиц.

Приближение до целых

Отмечено, что округлять до единиц можно точно так же, как и до целых. Принцип один и тот же. Остановимся подробнее на округлении десятичных дробей до определенного разряда в целой части дроби. Представим пример приближения 756,247 до десятков. В разряде десятых располагается цифра 5. После округляемого разряда следует цифра 6. Следовательно, по правилам необходимо выполнить следующие шаги:

  • округление в большую сторону десятков на единицу;
  • в разряде единиц цифру 6 заменяют нулем;
  • цифры в дробной части числа отбрасываются;
  • в результате получают 760.

Обратим внимание на некоторые значения, в которых процесс математического округления до целых по правилам не отображает объективную картину. Если взять дробь 8,499, то, преобразовывая его по правилу, получаем 8.

Но по сути это не совсем так. Если поразрядно округлить до целых, то вначале получим 8,5, а затем отбрасываем 5 после запятой, и осуществляем округление в большую сторону.

Получаем 9, что, в принципе, не сосем точно. То есть в таких значениях погрешность существенна. Поэтому оцениваем задачу и, если ситуация позволяет, то лучше использовать значение 8,5.

! Изучение точного предмета: натуральные числа — это какие числа, примеры и свойства

Приближение до десятых

Как округлить до десятых, до сотых, до тысячных? Операция осуществляется по таким же правилам, как и до целых. Основная задача – правильно определить округляемый разряд и знак, который следует за ним.

К примеру, дробь 6,7864 при доведении:

  • до десятых становится равной 6,8;
  • до сотых – 6,79;
  • если округлить до тысячных, то получают 6,786.

Обратите внимание! Незнание этих правил очень удачно используют маркетологи. В магазинах, наблюдая ценник с указанием числа 5,99, большинством покупателей воспринимается цена, равная 5. В действительности же цена товара практически 6.

Математика — учимся округлять числа

Правила округления чисел до десятых



Вывод

Приоритетов умения выполнять такие математические операции можно привести ещё достаточно много. Важно научиться правильно оценивать ситуацию, задаться целью, и результат придет незамедлительно.

! Изучаем математику в игровой форме: как ребенку быстро выучить таблицу умножения

>Можно ли округлять НДС по целых рублей?

Разрешается ли округлять НДС до целях рублей? Поясним.

Оставить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *